Sample Articles from Education Sciences Related to our Special Issue Topic

One of the reasons that the Journal of Education Sciences was so interested in this special issue on peer assisted learning is that they have not published on the topic before. Below are four sample articles that relate to education and provide a model.

Student Engagement and Blended Learning: Making the Assessment Connection <Click this link for the published article>

There is an increased focus on student engagement and blended approaches to learning in higher education. This article demonstrates how collaborative learning applications and a blended approach to learning can be used to design and support assessment activities that increase levels of student engagement with course concepts, their peers, faculty and external experts, leading to increased student success and satisfaction.

Keywords: student engagement; collaborative learning applications; blended learning; assessment

Active Learning: A Shift from Passive Learning to Student Engagement Improves Understanding and Contextualization of Nutrition and Community Health <Click this link for the published article>

Challenging the notion of “teaching by telling,” active learning utilizes a student-oriented approach by emphasizing the concept of knowledge retention through peer interaction. To further examine the potential of active learning, we created a workshop based on didactic education and student collaboration. Participants included undergraduate students from traditionally underrepresented and disadvantaged backgrounds. The workshop was part of our summer academic enrichment program run in an urban, medically underserved community. The workshop focused on clinical and biochemical nutrition, wherein students synthesized information by discussing dietary choices and the socioeconomic aspects of nutrition. Student reception of the workshop was adjudged by anonymous surveys. The survey questions were designed to gauge how the workshop objectives were achieved. Cronbach alpha (0.276) confirmed that there was more than a single theme contained in the questions. The majority of students (97%) agreed that the workshop met the learning objectives: (1) acquire basic clinical knowledge, (2) gain a better understanding of nutrition, (3) formulate a linkage between clinical nutrition and disease, and (4) benefit from peer interaction. Students’ performance in the post-quiz (100% correct answers) had improved significantly compared to the pre-quiz (25% correct answers) suggesting acquisition, understanding and application of nutrition aspects taught in the workshop. Overall, the present study demonstrated the engagement and understanding of students with respect to learning about nutrition and community health in an active learning setting. These types of active-learning-based sessions may have broad applicability for any academic discipline to improve student engagement and knowledge retention.

Instructional Innovations in College-Level Molecular Bioscience Labs during the Pandemic-Induced Shift to Online Learning <Click this link for the published article>

The COVID-19 pandemic ushered in an unprecedented period of both crisis and innovation in higher education. The shift to an online learning environment was particularly problematic for courses in which students learn disciplinary practices. Scientific practice requires hands-on training and collaborative engagement with instructors and peers, dimensions of the learning environment that were challenging to recreate online. Here, we describe the resulting instructional innovations and challenges experienced in shifting multiple undergraduate- and graduate-level molecular bioscience labs, including Genetics, Cell Biology, Bioinformatics, and Advanced Microscopy, to an online learning environment. Instructors pursued novel approaches, techniques, and at-home lab tools with varying success. Many innovations were retained after the transition back to an in-person learning environment because they uniquely supported previously overlooked aspects of student learning. Consistent with other reports, we found that marginalized students pursuing science were disproportionately burdened by COVID-19 and the shift to an online learning environment. A description of what worked for online learning, what didn’t, and what is worth holding onto in the future is valuable for constructing learning environments that effectively support learners in their disciplinary practice.

Social Connectedness in Physical Isolation: Online Teaching Practices That Support Under-Represented Undergraduate Students’ Feelings of Belonging and Engagement in STEM <Click this link for the published article>

The COVID-19 outbreak spurred unplanned closures and transitions to online classes. Physical environments that once fostered social interaction and community were rendered inactive. We conducted interviews and administered surveys to examine undergraduate STEM students’ feelings of belonging and engagement while in physical isolation, and identified online teaching modes associated with these feelings. Surveys from a racially diverse group of 43 undergraduate students at a Hispanic Serving Institution (HSI) revealed that interactive synchronous instruction was positively associated with feelings of interest and belonging, particularly for students of color, while noninteractive instruction reduced social belonging, but was related to more cognitive engagement. Small group and one-on-one interviews with 23 of these students suggest that students derived feelings of connectedness from their instructors, peers, and prior experiences and relied on their sense of competency to motivate themselves in the course and feel a sense of belonging. Two embedded cases of students in physics classrooms are compared to highlight the range of student feelings of connectedness and competency during the lockdown. Findings reaffirm that social interaction tends to support belonging and engagement, particularly for under-represented (Black or African American and Hispanic) racial groups in STEM. STEM instructors who aim to support feelings of belonging and engagement in virtual learning environments should consider increasing opportunities for student–student and student–teacher interactions, as well as taking a flexible approach that validates and integrates student voice into instruction. Future research is needed to further explore the themes of relatedness and competency that emerged as aspects of course belonging.